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ABSTRACT

Hg(OTf, (0.1 mol%)

o~ H,0 (5 equiv)
3 g
N CHNO,-CHSCN
2:1 OH
25°C, 30 h

Hg(OTf), exhibits remarkable catalytic activity for the hydroxylative cyclization of 1,6-enynes. The present procedure should involve a sequence
of mercuration of a terminal alkyne, carbocyclization, hydration, and protodemercuration that regenerates the catalyst.

Carbocyclization is an important subject in modern organic
synthesis;? anda,w-enynes have been employed as the key
substrate for transition metal (PdPt? Ru? RhE Ir,” Ti,8 or
G&) catalyzed alkene-exo mode cyclization. Mercuric salts
have also been employed for enyne carbocyclization; how-
ever, stoichiometric amounts were usé®e have devel-
oped mercuric triflate Hg(OT$)as a highly efficient olefin
cyclization agent! and its complex with an amine or
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tetramethylurea (TMU) was employed for the synthesis of a
variety of polycyclic natural productd:'® Recently, we
discovered that Hg(OTRA(TMU), complex exhibits effective
catalytic activity for the hydration of terminal alkynes to give
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Table 1. Hg(OTf),-Catalyzed Hydroxylative Cyclization df

Table 2. Hg(OTf),-Catalyzed Hydroxylative Cyclizatién

Hg(OTf), TMU time yield

entry (mol %) (mol %) (h) (%)2
10 0 3 99
2 5 0 6 99
3 1 0 16 99
4 0.1 0 30° 99
5 10 10 3 96
6 5 5 5 99
7 1 1 16 98
8 10 20 3 93
9 5 10 6 89
10 1 2 16 93
11¢ 16 0

aGLC yield using hexadecane as an internal standaRkaction was
carried out on a 0.5 M substrate concentratfoReaction with 10 mol %
of TfOH

methyl ketones in excellent yield$.The reaction should
involve Hg*-induced hydration of alkyne and subsequent
protodemercuratidfi® by TfOH that is generated in situ
Thus, we expected the intervention of a cyclization step prior
to the hydration and developed an efficient catalytic process
to prepare exomethylene carbocycles. Although the mercuric
salt catalyzed cyclization otv-alkynoic acids affording
lactones is reportetf, to our best knowledge the present
protocol is the first mercuric salt catalyzed carbocyclization.

O/\// HgOTh
AN H,0 (5 equiv)
CHsNO,-CHsCN OH
1 (9:1) 2
HgOTf

/
o TIOH

2 + Hg(OTf),

The reaction of prenyl propargyl eth&rwith 10 mol %

of Hg(OTf), in the presence of 5 equiv of water in gH
NO,/CH;CN (9:1, 0.1 M concentration) at room temperature
for 3 h afforded the exomethylene carbirih quantitative
yield (Table 1, entry 1). The reaction should involve the vinyl
mercury compoun@® as the intermediate, and the reaction
with triflic acid, generated in situ, regenerates mercuric
triflate, which establishes the catalytic cycke 5 or 1 mol

% loading of catalyst was also enough to complete the
reaction to give2 in 99% vyield within 5 and 16 h,

Substrate Hg(OTf)s (mol%) Yield (%)
o/\// ;
~N\-Ph
4 5(85) oOH
~7
° 5
N
6 h 7(95)
~7

—_

C(K T\
9(13) | OH 10(70)

o}

50%

MeOOC MeOOC
MeOOC MeOOC
14 (90)
MeOOC MeOOC

(89%)

MeOOC><:/§_< MeOOC><:/k_<
MeOOC MeGOC

18 (19)
/
MeOOC
Meo00 MeOOC
20 (86) MeOOC
MeOOC

A

A

aReaction was carried out in the presence of 5 equiv gd.H One
equivivalent of HO was used.

respectively (entries 2 and 3). Even 0.1 mol % of Hg(QTf)
afforded 2 quantitatively within 30 h by conducting the
reaction at 0.5 M substrate concentration (entry 4). When a
1:1 complex of Hg(OTf) and TMU was employed, es-
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sentially the same results were obtained (entries’)5
However, the 1:2 complex afforded slightly lower yields
(entries 8-10). Generally Hg(OT#)is stable in the presence

of H,O (although it is soluble and hygroscopiéy;t2o.ce
however, some people are suspicious about its decomposition
to Hg(OH), and TfOH and feel that it is probably the TfOH
that brings about the reaction. Therefore, a control experiment
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with 10 mol % of TfOH was performed, and it afforded none
of the produc®2 (entry 11) but an alkylation product (10%)
as the only isolable material from a complicated mixttfre.
The reaction of cinnamyl propargyl ethémwith 1 mol %
of Hg(OTf), in the presence of 5 equiv of water in gH
NO,/CHsCN (9:1) at room temperature for 20 h afforded
the carbinol5 as a 16:1 mixture of diastereomers in 85%
yield. Treatment of geranyl propargyl eth@with 5 mol %
of Hg(OTf), provided carbinol7 as a 20:1 mixture in 95%
yield. Reaction of the homoprenyl propargyl etiBewith 1
mol % of Hg(OTf), however, afforded six-membered ring
ether9 in only 13% yield, and the major product was the
ketonelOin 70% yield. Bishomoprenyl propargyl eth#t

did not afford any seven-membered ring product, and the

ketonel2 was obtained in 92% yield by the reaction using
5 mol % catalyst. Dimethyl malonate derivatiy8 afforded
the cyclization produci4; however, it required at least 10

mol % of catalyst to complete the reaction, probably as a

result of chelation with the malonate residue. Reaction of
15 with 10 mol % of catalyst afforded the six-membered
carbocyclel6 in 69% yield. However, the reaction was not
as clean as the others, affording the isomeric carbirvol
(6%) and the methyl keton&8 (19%). On the other hand,
the reaction of the enyn&9 with 10 mol % catalyst and 2
equiv of water afforded the lactor9 in 86% yield along
with the alcohol21 (3%). The reaction of sulfonamide
derivative22 and 10 mol % of catalyst afforded the five-
membered ring carbinoR3, albeit in only 20% vyield.
Methoxybenzyl propargyl ethe24 reacted with 1 mol %
Hg(OTf), and 1 equiv of water to furnish the dimerization

(16) The structure of the alkylation product was deduced from spectral

data to be following.
S~
Q =
oH |
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product 25 in 70% vyield, probably via acid-catalyzed
dimerization of the primary produ@6. Reaction with 5

equiv of water, on the other hand, afforded only the
hydrolysis produc®?in 85% yield. Thus, we have developed

L
o (e}
26 OMe 27 OMe

a novel Hg(OTf)-catalyzed hydroxylative carbocyclization
to construct five-membered ring products in good to excellent
yields via mercuration of a terminal alkyne, carbocyclization,
hydration, and protodemercuration sequence regenerating the
catalyst, Hg(OTf). The reaction is mild enough to be applied
to a variety of substrates, and particularly, the observation
of the equal applicability of the mercuric triflatd MU
complex allows a wider possibility to achieve the reactions
of acid-sensitive substrates. The efficiency to construct six-
membered rings from 1,7-enynes under Hg(@EBtalysis

is an unsolved problem, and we are currently exploring to
find suitable conditions.
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