Mercuric Triflate Catalyzed Hydroxylative Carbocyclization of 1,6-Enynes

Mugio Nishizawa,* Veejendra K. Yadav,[†] Mariusz Skwarczynski, Hiroko Takao, Hiroshi Imagawa, and Takumichi Sugihara

Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan

mugi@ph.bunri-u.ac.jp

Received February 5, 2003

ABSTRACT

Hg(OTf)₂ exhibits remarkable catalytic activity for the hydroxylative cyclization of 1,6-enynes. The present procedure should involve a sequence of mercuration of a terminal alkyne, carbocyclization, hydration, and protodemercuration that regenerates the catalyst.

Carbocyclization is an important subject in modern organic synthesis,^{1,2} and α, ω -enynes have been employed as the key substrate for transition metal (Pd,³ Pt,⁴ Ru,⁵ Rh,⁶ Ir,⁷ Ti,⁸ or Ga⁹) catalyzed alkene-exo mode cyclization. Mercuric salts have also been employed for enyne carbocyclization; however, stoichiometric amounts were used.¹⁰ We have developed mercuric triflate Hg(OTf)₂ as a highly efficient olefin cyclization agent,¹¹ and its complex with an amine or

(1) Řeviews on metal-catalyzed carbocyclization: (a) Ojima, I.; Tzamarioudaki, M. L. Z.; Donovan, R. J. *Chem. Rev.* **1996**, *96*, 635–662. (b) Negishi, E.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. *Chem. Rev.* **1996**, *96*, 365–393. (c) Trost, B. M. *Chem. Eur. J.* **1998**, *4*, 2405–2412.

(2) (a) Trost, B. M.; Krische, M. J. Synlett **1998**, 1–16. (b) Trost, B. M. Acc. Chem. Res. **1990**, 23, 34–42.

(3) (a) Trost, B. M.; Lautens, M.; Chan, C.; Jebaratnam, D. J.; Mueller, T. J. Am. Chem. Soc. **1991**, 113, 636–644. (b) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **1999**, 121, 9728–9729.

(4) (a) Mendez, M.; Munoz, P. M.; Nevado, C.; Cardenas, D. J. Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511.

(5) (a) Trost, B. M.; Toste, F. D. J. Am. Chem. Soc. **2000**, 122, 714–715. (b) Chatani, N.; Inoue, H.; Ikeda, T.; Murai, S. J. Org. Chem. **2000**, 65, 4913–4918. (c) Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. **1998**, 120, 9104–9105.

(6) (a) Cao, P.; Wang, B.; Zhang, X. J. Am. Chem. Soc. **2000**, 122, 6490– 6491. (b) Cao, P.; Zhang, X. Angew. Chem., Int. Ed. **2000**, 39, 4104– 4106.

(7) Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem. 2001, 66, 4433-4436.

(8) Sturla, S. J.; Kablaoui, N. M.; Buchwald, S. L. J. Am. Chem. Soc. 1999, 121, 1976–1977.

(9) Chatani, N.; Inoue, H.; Kotsuma, T.; Murai, S. J. Am. Chem. Soc. 2002, 124, 10294–10295.

10.1021/ol034201u CCC: \$25.00 © 2003 American Chemical Society Published on Web 04/15/2003

tetramethylurea (TMU) was employed for the synthesis of a variety of polycyclic natural products.^{12,13} Recently, we discovered that $Hg(OTf)_2 \cdot (TMU)_2$ complex exhibits effective catalytic activity for the hydration of terminal alkynes to give

ORGANIC LETTERS

2003 Vol. 5, No. 10

1609-1611

(10) (a) Riediker, M.; Schwartz, J. J. Am. Chem. Soc. 1982, 104, 5842–5844. (b) Larock, R. C.; Liu, C.-L. J. Org. Chem. 1983, 48, 2151–2158.
(c) Larock, R. C.; Harrison, L. W. J. Am. Chem. Soc. 1984, 106, 6, 4218–4227. (d) Douin, J. D.; Boaventura, M-. A.; Conia, J.- M. J. Am. Chem. Soc. 1985, 107, 1726–1729. (e) Forsyth, C. J.; Clardy, J. J. Am. Chem. Soc. 1990, 112, 3497–3505. (f) Huang, H.; Forsyth, C. J. J. Org. Chem. 1995, 60, 2773–2779. (g) Ciminiello, P.; Fattorusso, E.; Magno, S.; Magngoni, A.; Pansini, M. J. Org. Chem. 1995, 60, 5746–5747. (11) (a) Nishizawa, M.; Takenaka, H.; Nishide, H.; Hayashi, Y.

(11) (a) Nishizawa, M.; Takenaka, H.; Nishide, H.; Hayashi, Y. *Tetrahedron Lett.* **1983**, 24, 2581–2584. (b) Nishizawa, M.; Morikuni, E.; Asoh, K.; Kan, Y.; Uenoyama, K.; Imagawa, H. *Synlett* **1995**, 169–170.

(12) (a) Nishizawa, M.; Takenaka, H.; Hayashi, Y. J. Am. Chem. Soc. 1984, 106, 4290-4291. (b) Nishizawa, M.; Takenaka, H.; Hayashi, Y. J. Am. Chem. Soc. 1985, 107, 522-523. (c) Nishizawa, M.; Takenaka, H.; Hayashi, Y. J. Org. Chem. 1986, 51, 806. (d) Nishizawa, M.; Yamada, H.; Hayashi, Y. J. Org. Chem. 1986, 27, 187-190. (e) Nishizawa, M.; Yamada, H.; Hayashi, Y. J. Org. Chem. 1987, 52, 4878. (f) Nishizawa, M.; Takao, H.; Kanoh, N.; Asoh, K.; Hatakeyama, S.; Yamada, H. Tetrahedron Lett. 1994, 35, 5693-5696. (g) Nishizawa, M.; Morikuni, E.; Takeji, M.; Asoh, K.; Hyodo, I.; Imagawa, H.; Yamada, H. Synlett 1996, 76-78. (i) Nishizawa, M.; Imagawa, H. Synlett 1998, 76-78. (i) Nishizawa, M.; Takao, H.; Iwamoto, Y.; Yamada, H.; Imagawa, H. Synlett 1998, 76-78. (k) Imagawa, H.; Shigaraki, T.; Suzuki, T.; Takao, H.; Yamada, H.; Yamada, H.; Imagawa, H. Synlett 1998, 76-78. (k) Imagawa, M. Chem. Pharm. Bull. 1998, 46, 1341-1342. (l) Nishizawa, M.; Shigaraki, T.; Takao, H.; Imagawa, H.; Sugihara, T. Tetrahedron Lett. 1999, 40, 1153-1156.

(13) (a) Parker, K.; Resnick, L. J. Org. Chem. 1995, 60, 5726-5728.
(b) Newcomb, N. J.; Ya, F.; Hiemstra, H.; Speckamp, W. N. J. Chem. Soc., Chem. Commun. 1994, 767-768. (c) Gopalan, A. S.; Prieto, R.; Mueller, B.; Peters, D. Tetrahedron Lett. 1992, 33, 1679-1682.

 $^{^{\}dagger}$ On leave from Indian Institute of Technology, Kanpur, India, as a JSPS Visiting Scientist.

Table 1.	Hg(OTf) ₂ -Catalyzed Hydroxylative Cyclization of 1			
entry	Hg(OTf) ₂ (mol %)	TMU (mol %)	time (h)	yield (%) ^a
	10	0	3	99
2	5	0	6	99
3	1	0	16	99
4	0.1	0	30^{b}	99
5	10	10	3	96
6	5	5	5	99
7	1	1	16	98
8	10	20	3	93
9	5	10	6	89
10	1	2	16	93
11 ^c			16	0

 a GLC yield using hexadecane as an internal standard. b Reaction was carried out on a 0.5 M substrate concentration. c Reaction with 10 mol % of TfOH

methyl ketones in excellent yields.¹⁴ The reaction should involve Hg^{2+} -induced hydration of alkyne and subsequent protodemercuration^{10c} by TfOH that is generated in situ. Thus, we expected the intervention of a cyclization step prior to the hydration and developed an efficient catalytic process to prepare exomethylene carbocycles. Although the mercuric salt catalyzed cyclization of ω -alkynoic acids affording lactones is reported,¹⁵ to our best knowledge the present protocol is the first mercuric salt catalyzed carbocyclization.

The reaction of prenyl propargyl ether **1** with 10 mol % of Hg(OTf)₂ in the presence of 5 equiv of water in CH₃-NO₂/CH₃CN (9:1, 0.1 M concentration) at room temperature for 3 h afforded the exomethylene carbinol **2** in quantitative yield (Table 1, entry 1). The reaction should involve the vinyl mercury compound **3** as the intermediate, and the reaction with triflic acid, generated in situ, regenerates mercuric triflate, which establishes the catalytic cycle. A 5 or 1 mol % loading of catalyst was also enough to complete the reaction to give **2** in 99% yield within 5 and 16 h, respectively (entries 2 and 3). Even 0.1 mol % of Hg(OTf)₂ afforded **2** quantitatively within 30 h by conducting the reaction at 0.5 M substrate concentration (entry 4). When a 1:1 complex of Hg(OTf)₂ and TMU was employed, es-

 a Reaction was carried out in the presence of 5 equiv of H2O. b One equivivalent of H2O was used.

sentially the same results were obtained (entries 5-7). However, the 1:2 complex afforded slightly lower yields (entries 8-10). Generally Hg(OTf)₂ is stable in the presence of H₂O (although it is soluble and hygroscopic);^{11b,12b,c,e} however, some people are suspicious about its decomposition to Hg(OH)₂ and TfOH and feel that it is probably the TfOH that brings about the reaction. Therefore, a control experiment

⁽¹⁴⁾ Nishizawa, M.; Skwarczynski, M.; Imagawa, H.; Sugihara, T. Chem. Lett. 2002, 12–13.

 ^{(15) (}a) Chan, D. M. T.; Marder, T. B.; Milstein, D.; Taylor, N. J. J. Am. Chem. Soc. **1987**, 109, 6385–6388. (b) Amos, R. A.; Katzenellenbogen, J. A. J. Org. Chem. **1978**, 43, 560–564.

with 10 mol % of TfOH was performed, and it afforded none of the product 2 (entry 11) but an alkylation product (10%) as the only isolable material from a complicated mixture.¹⁶

The reaction of cinnamyl propargyl ether 4 with 1 mol % of Hg(OTf)₂ in the presence of 5 equiv of water in CH₃-NO₂/CH₃CN (9:1) at room temperature for 20 h afforded the carbinol 5 as a 16:1 mixture of diastereomers in 85% yield. Treatment of geranyl propargyl ether 6 with 5 mol % of Hg(OTf)₂ provided carbinol 7 as a 20:1 mixture in 95% yield. Reaction of the homoprenyl propargyl ether 8 with 1 mol % of Hg(OTf)₂, however, afforded six-membered ring ether 9 in only 13% yield, and the major product was the ketone 10 in 70% yield. Bishomoprenyl propargyl ether 11 did not afford any seven-membered ring product, and the ketone 12 was obtained in 92% yield by the reaction using 5 mol % catalyst. Dimethyl malonate derivative 13 afforded the cyclization product 14; however, it required at least 10 mol % of catalyst to complete the reaction, probably as a result of chelation with the malonate residue. Reaction of 15 with 10 mol % of catalyst afforded the six-membered carbocycle 16 in 69% yield. However, the reaction was not as clean as the others, affording the isomeric carbinol 17 (6%) and the methyl ketone 18 (19%). On the other hand, the reaction of the envne 19 with 10 mol % catalyst and 2 equiv of water afforded the lactone 20 in 86% yield along with the alcohol 21 (3%). The reaction of sulfonamide derivative 22 and 10 mol % of catalyst afforded the fivemembered ring carbinol 23, albeit in only 20% yield. Methoxybenzyl propargyl ether 24 reacted with 1 mol % Hg(OTf)₂ and 1 equiv of water to furnish the dimerization

(16) The structure of the alkylation product was deduced from spectral data to be following.

product **25** in 70% yield, probably via acid-catalyzed dimerization of the primary product **26**. Reaction with 5 equiv of water, on the other hand, afforded only the hydrolysis product **27** in 85% yield. Thus, we have developed

a novel Hg(OTf)₂-catalyzed hydroxylative carbocyclization to construct five-membered ring products in good to excellent yields via mercuration of a terminal alkyne, carbocyclization, hydration, and protodemercuration sequence regenerating the catalyst, Hg(OTf)₂. The reaction is mild enough to be applied to a variety of substrates, and particularly, the observation of the equal applicability of the mercuric triflate—TMU complex allows a wider possibility to achieve the reactions of acid-sensitive substrates. The efficiency to construct sixmembered rings from 1,7-enynes under Hg(OTf)₂-catalysis is an unsolved problem, and we are currently exploring to find suitable conditions.

Acknowledgment. This work was supported by a Grantin-Aid for Priority Area (no. 14044111) and Fundamental Research A (no. 14208075) from the Ministry of Education, Culture, Sports, Science, and Technology of Japanese Government. We thank Dr. Masao Toyota of Tokushima Bunri University for his kind technical support.

Supporting Information Available: Experimental procedure and NMR data. This material is available free of charge via the Internet at http://pubs.acs.org.

OL034201U